
Git Best Practises

The Pencil Code Team

May 2, 2019

Contents

1 Operative Summary 1

2 Prerequisites 2
2.1 What is Git? . 2
2.2 What is a Git repository? . 2
2.3 What is a commit? . 2
2.4 The narrative metaphor . 3
2.5 Atomicity . 3

3 Don’t panic 4
3.1 I’m almost panicking . 4

4 Joining different lines of development 5
4.1 What is merging? . 5
4.2 What is rebasing? . 5
4.3 Pros and cons . 6

4.3.1 Graph structure . 6
4.3.2 The worst thing that can happen . 7

5 Best practices 7
5.1 Don’t merge upstream into your tracking branch 7

5.1.1 Alternative 1: Rebase . 8
5.1.2 Alternative 2: Merge the other way around 9

5.2 Feature branches . 9

A Which way to merge 11

Abstract

Tips and recommendations for using Git with the Pencil code:
• Don’t panic.
• Never pull from the remote branch into the tracking branch.
• Make the git history a good narrative.

1 Operative Summary

Recall you have two repositories; local to your machine and origin on github

Basic work cycle:

preparation:

git diff # check for differences with local repository

git status # check which files have been modified compared to local repository

git diff origin/master master #check differences between local repository and origin repository

execution:

git stash #protect uncommitted local changes (if any) temporarily

git pull --rebase # get origin/master version

git push # update the origin/master with locally committed revisions

git stash pop # restore locally your uncommitted changes

Note, ’git add’ to add new file to local git repository, ’git commit’ updates local changes to
you local git repository, ’git push’ alone will change the origin/master

In the event of a conflict see section 4.3.2, "The worst thing that can happen".

The rest of this document explains why, if you are interested or need more clarification . . .

1. Decide whether you want to rebase or merge your local changes into upstream (typi-
cally the origin/master branch).

(a) Rebase: Use ’git pull --rebase’ to get upstream changes into you local tracking
branch (typically master).

(b) Merge: Do not merge upstream into your tracking branch like this:

git pull origin/master # DON’T!
or
git merge origin/master # DON’T!

because that breaks the SVN bridge and makes it quite difficult to understand the
history of commits.

Instead, merge your changes into upstream, either manually or using

git pc reverse-pull # DO THIS INSTEAD
or
git pc reverse-merge # DO THIS INSTEAD

2. Think about using feature branches for logic units that cover more than a few commits.

3. Don’t rebase (or otherwise modify) published history.

2 Prerequisites

This text is not an introduction to Git – there are many Git tutorials available on the web,
and I will assume that you already know the basic operations.

But for the discussion below we will need a few important concepts.

2

2.1 What is Git?

Git is a flexible version-control system that is well-suited for software development, be it
with a centralized server (Github, in our case), or in a completely decentralized setting.

2.2 What is a Git repository?

A Git repository is a set of unique commits that form a directed acyclic graph (DAG) like
this:

A---B---C---D---E---F--- master
\ / \
G---H I---J--- feature

We say that E is a child of D, and that D has two parents, C and H. The ancestors of D consists
of A, B, C, G, and H. The descendants of D are E, F, I, and J.

If you know how to read this diagram, you know enough about DAGs for our purposes.1

2.3 What is a commit?

A commit typically represents a state of the file tree (the directory tree you get by checking
out a revision), together with its complete commit ancestry. So you get different commit ids
(represented as hexadecimal SHA1 hash codes) if you

• commit a change, commit the inverse of that change, and commit the original change
again;

• change the commit message of your last commit (with ‘git commit --amend’);

• take some part of the commit graph and attach it somewhere else (‘git rebase’);

• make any change to a commit that is an ancestor of the commit in question.

2.4 The narrative metaphor

In many respects the commit history we create with Git is a narrative that tells us (and others)
how the code evolved to its current state.

Indeed, committing changes has a lot in common with telling a story, and that story can be
interesting or boring, it can be presented in a logical way or totally confusing, even if the
final code in both cases is the same.

And while there are different styles of telling the story well, a badly told narrative will make
us all suffer. So please think about the logical order in which your changes make most sense
and formulate and format your log messages appropriately.2

1You get extra credits if you can tell which of the commits A, E and G belong to branch feature.
2The first line of your commit message is a heading summarizing what was intended, or what has happened.

The second line is traditionally kept empty, and more details can follow on lines 3, 4, 5, etc. of the log message.

3

https://en.wikipedia.org/wiki/Directed_acyclic_graph

2.5 Atomicity

Git commands tend to be focused on one task.3 As a consequence, what the user perceives
as one logical step may require two or three consecutive command calls. This helps in
understanding what you are doing, and when something goes wrong you know where
exactly the problem occurred.

However, if you prefer to combine several elementary git operations into one command call
(say, committing and pushing), or don’t want to type the same command-line options over
and over again, you can of course create a shell script, or you can define a Git alias. For
example, after running

git config --global alias.where ’rev-parse --short=12 HEAD’

you will have a new git command ‘git where’ that tells you the SHA1 hash of the current
HEAD commit. Git aliases automatically inherit some niceties like command completion or
a --help option.

As in other contexts, it is a virtue to not become too dependent on such helpers, lest you
forget what you are doing, have a hard time communicating with others and feel lost in
environments where those helpers are missing.

The Pencil Code comes with a ‘git pc’ script that provides some combined operations. Run
‘git pc -h’ to get a list of available sub-commands.

3 Don’t panic

Or: What to do when you think you’re lost

Git will try hard to preserve your changes:

• Any changes you committed will be part of the reflog for at least two weeks4, even if
you change or abandon them.

• Uncommitted changes to git-controlled-files will only get overwritten if you run one
of the commands

– git checkout <file-or-directory>

– git reset --hard

– And of course any non-git commands that change files

• Files unknown to Git will only get lost with5

– git clean

– Again, any non-git commands that change files

Table 1 summarizes this discussion.
3One popular counter example is ‘git pull [--rebase]’, which is pretty much just a combination of ‘git

fetch’with either ‘git merge’ or ‘git rebase’.
4Unless you explicitly decide otherwise.
5There are corner cases where other git commands (like git stash --include-untracked) call git clean,

which can in principle lead to data loss. However, this should only concern files that match your .gitignore
patterns, and if that is the case for any file you care about, you have been asking for trouble.

6Leaving important Git commits dangling (≈ unused) for more than two weeks counts as insisting on data
loss.

4

http://blog.icefusion.co.uk/git-stash-can-delete-ignored-files-git-stash-u/

Table 1: How to lose changes with git

Changes How they can get lost

Changes committed to git Not at all, unless you insist 6

Uncommitted changes to git-controlled files git checkout <file-or-directory>
git reset --hard
Non-git commands

Files unknown to Git git clean
Non-git commands

3.1 I’m almost panicking . . .

. . . for I’m afraid something got lost, although I know this is not the case because I stayed away from
the commands in Table 1.

Here is how to see almost every change7 that was ever8 known to git:

gitk --reflog --all
or
tig --reflog --all
or, without graphics,
git reflog --all --glob=’stash*’

If you prefer melodramatic command names, try
git pc panic

If you want to also see dropped stashes, you can use

git pc panic --full

4 Joining different lines of development

In a community coding project like the Pencil Code, we will frequently have a situation like
this:

A---B---C----- branch1
\
F---G--- branch2

where different (diverging) commits have been made on different branches (very often, these
branches are the remote branch origin/master and the local tracking branch master), and we
want to integrate both lines of development into one.

Git offers two different techniques to achieve that goal: merging and rebasing. Tobias Heine-
mann has created a screencast where he demonstrates different variants of these approaches.

7This will not show dropped stashes or stashes older than the last one (but those are still accessible).
8Redefining “ever” = “in the last two weeks” for dangling commits.

5

https://asciinema.org/a/dauj562l4uwr7bpyohqyewkj5

4.1 What is merging?

A merge commit adds a new connection to parts of the Git graph. For example, if we have
the following situation

A---B---C----- master
\
F---G--- feature

and want to bring the changes from branch feature to master, we can merge feature into master
and get

A---B---C---D--- master
\ /
F---G----- feature

In the pure DAG sense, the two parents C and G of the merge commit D are completely
equivalent, but for reasons discussed below, we want to make sure we merge feature into
master (so C is the first parent and G is the second parent), not the other way around.

You remember our narrative metaphor? If you always merge your commits or groups of
commits because you don’t want to modify history, you are narrating in a diary or chronicler’s
style.

4.2 What is rebasing?

In the example above, we have a second option to bring the feature branch’s changes into
master, by creating new commits that contain those changes, but start from the state C, not
B:

A---B---C----------- master
\
F’---G’--- feature

We say that we have rebased the commits F and G from B onto C.

Rebasing modifies history, which is only permissible as long as this history is local. So don’t
rebase published commits. The commits that are eligible to rebasing are the ones displayed by
gitk origin/master..master
or
tig origin/master..master
or, without graphics,
git log origin/master..master

Even if the new commit F’ may introduce the same textual difference as the original commit
F, the file-tree state it represents is completely new and there is no guarantee that it will
e.g. compile, even if both, C and F do.

Once you finish the rebase, you appear to have lost the original change F by pretending that
you were applying a change F’ in the first place.9 That’s perfectly OK, as you will no longer
be interested in the original change when the new version gets part of the Git narrative.

Rebasing is not an exclusive option. Even if you routinely rebase your local changes, you
will want to merge longer-lived feature branches.

9This is of course not true: you can use ‘git reflog’ and friends to view your original changes, see Sec. 3.1.

6

In terms of narrating, rebasing allows you to use letter style, where you bring facts into logical
frames and order them accordingly (because nobody would want to read your stream-of-
consciousness letters).

4.3 Pros and cons

Here is the decision matrix for merging vs. rebasing

Criterion Merge Rebase

Resulting graph structure More complex Simpler
History Preserved Modified
Safety Safer Less safe 10

In short, use merging when you are afraid – but you know from Sec. 3 that you needn’t be
afraid.

4.3.1 Graph structure

Every merge commit increases the connectivity of the commit graph by one11. A rebase, by
contrast, does not change the connectivity and leads to a more linear history.

4.3.2 The worst thing that can happen

If you have conflicts, rebasing can bring your working-directory into a state where you are
not on any branch (detached head). This is not really something to worry about: Just fix the
conflicts, ‘git add’ the changes, and do ‘git rebase --continue’ to finish the rebase; and
in case you get lost, do ‘git rebase --abort’ and start afresh. Even if you get completely
lost and resort to measures like ‘git reset’, you needn’t be afraid to lose history.

5 Best practices

5.1 Don’t merge upstream into your tracking branch

Suppose you just started developing code on master. Your branches look like this (A and B
are commits, the ‘o’ is just a visual connector):

--A---B----- origin/master (remote branch)
\
o--- master (local tracking branch)

Despite its name, the remote branch exists only on your computer. It represents what is known
about a branch called master on the server and serves for synchronization with the server.
You cannot directly commit to this branch.

The tracking branch reflects how you would like the server branch to look like.12

10Less safe in the sense that conflicts can put you in a detached-head state.
11Or even more than one, in the case of an octopus merge. But those are somewhat exotic.
12And if that is not compatible with the server’s latest history, you modify the tracking branch until it is.

7

Now you commit some changes X, Y to your local tracking branch:

--A---B---------- origin/master
\
X---Y---- master

and want to push them to the server. If the server is still at commit B, this will result in

--A---B---X---Y----- origin/master
\
o--- master

and you are done.

However, if somebody has committed changes to the server before you push, you will get
an error message13:

To [...]
! [rejected] master -> master (fetch first)
error: failed to push some refs to [...]
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., ’git pull ...’) before pushing again.
hint: See the ’Note about fast-forwards’ in ’git push --help’ for details.

Before you can fix the problem, you need to ‘git fetch’ to update the remote branch:

--A---B---C---D---E--- origin/master
\
X---Y--------- master

Now your task is to bring the two lines of development together, and you can either do this
using rebase, or using merge.

5.1.1 Alternative 1: Rebase

Rebasing is straight-forward, you run14

git rebase origin/master

if necessary deal with conflicts (that will temporarily throw your repository into a headless
state) and end up with

--A---B---C---D---E----------- origin/master
\
X’---Y’--- master

You have changed your commits by turning them into descendants of E (and possibly by
including solutions for conflicts) and you can now push to get

13Do you see the ellipses in the suggested ‘git pull ...’ command? Git did not say you should run just
‘git pull’ without any arguments. If you accidentally do happen to run ‘git pull’ without arguments,
then you can undo this by running ‘git reset --merge HEAD~1’

14If you have uncommitted changes at this point, Git will refuse to do anything before you have stashed them
away. Git can do this for you automatically if you use ‘git rebase --autostash origin/master’ instead.
See footnote 16 for more information on Git’s autostash functionality.

8

--A---B---C---D---E---X’---Y’---- origin/master
\
o--- master

As mentioned earlier, this approach gives you a linear history similar to what you know
from Subversion.

While it is completely feasible to first fetch, then rebase, you can have both in one command:

git pull --rebase

This is equivalent togit fetch; git rebase origin/master, so it is exactly what we need15

To summarize this subsection: To push your committed changes, run

git pull --rebase
[test]
git push

and life will be beautiful.16

5.1.2 Alternative 2: Merge the other way around

Alternatively, we can merge the two branches together. Here the discussion gets more
complicated, so we moved it to Appendix A.

The take-home message is to merge not the remote branch into the tracking branch:

git pull origin/master # DON’T DO THIS
or
git merge origin/master # DON’T DO THIS

but rather the other way around, because the commit you push must not be a merge of origin/-
master into master.

Getting this right typically involves some temporary branch or tag and a git reset, but as
an alternative, you can use our

git pc reverse-pull origin/master # DO THIS INSTEAD
or
git pc reverse-merge origin/master # DO THIS INSTEAD

15You can even set the --rebase option via your git configuration, using
git config --global branch.master.rebase true
git config --global branch.autoSetupRebase always
and henceforth when you type ‘git pull’, you will in fact do ‘git pull --rebase’.

However, tacitly changing the behaviour of commands is a great source of confusion. Sooner or later you will
work on a system where you have not set these flags (e.g. because you forgot, or you are helping somebody
else). Without thinking twice, you will type ‘git pull’, then ‘git push’, and, voilà: after half year of
disciplined commits by everybody, you managed to break the SVN bridge again.

Thus, it is better to just get into the habit of always using git pullwith the --rebase flag.
16If you happen to have uncommitted changes when you want to ‘git pull --rebase’, Git will refuse to

do anything before you have stashed them away. With Git ≥ 2.6, you can configure rebase.autostash=true
to have git automatically stash away your uncommitted changes and restore them after the pull. For older
versions of Git, you get the same functionality with ‘git pc pull-and-rebase’, i.e.
git pc pull-and-rebase
[test]
git push

9

The higher-level rule behind this is as follows:

Rule 1: The first-parent history of origin/master should corre-
spond to the order in which the commits appeared on the server
and may thus only be appended to.

If you violate this rule, you pretend that changes that were already on the server have only
just appeared there due to your merge, and that your changes have been on the server
before. As a consequence, tools like the GitHub SVN bridge or the commit emails will fail,
and history will generally become misleading.

See Appendix A for a discussion of first-parent history.

5.2 Feature branches

• When you are working on one topic and expect more than a handful17 of changes,
consider using a feature branch.

• When you are collaborating on a topic with somebody else and your changes are not
yet ready for the others, use a feature branch.

To work with a feature branch, just go to the latest commit of master (the later you start the
branch, the fewer conflicts you will create),

git checkout master
git pull --rebase

and create the branch

git checkout -b cool-new-feature

If that branch is long-lived, you will want to occasionally merge master into it.18 Say, you
have this situation

--A---B---C---D---E--- master
\
N---O---P---Q----- feature

Run

git fetch origin # update origin/master from the server
git stash # if you have uncommitted local changes

Then do

git checkout master # check out your local tracking branch ...
git pull --rebase # ... and bring it up to date

git checkout cool-new-feature # go back to your feature branch
git merge master # do the actual merge

to obtain
17Even just two or three commits may be enough to go for a feature branch if that improves the narrative.
18This does not violate our rule ‘don’t merge upstream into your local tracking branch’.

10

--A---B---C---D---E----- master
\ \
N---O---P---Q---R--- feature

There are some shorter variants to this procedure. You can use our ‘git pc’ script like this:

git fetch origin # update origin/master from the server
git pc ff-update master # update master without checking it out
git merge master # do the actual merge

or you could directly merge the remote branch

git merge origin/master

although this is less common than merging the local tracking branch.

After merging, don’t forget to

git stash pop

if you have stashed changes before you merged.

When your branch is ready for merging back, you do

git checkout master
git pull --rebase # bring master up-to-date
git merge cool-new-feature
[test]
git push

The topology now looks like this:

--A---B---C---D---E---F---G---H---I--- master
\ \ /
N---O---P---Q---R---S---T---U feature

What if that push failed due to somebody committing new changes upstream?

No problem. We tag the first merge attempt and merge that tag to the updated upstream
branch:

remember, we are on master
git push # fails: "! [rejected] master -> master (fetch first)"

git tag previous-merge-of-cool-new-feature
git fetch # update origin/master
git reset --hard origin/master # update local master branch
git merge previous-merge-of-cool-new-feature
[test]
git push

The narrative now says: We have tried to merge cool-new-feature into master, but failed to
push that, so we then merged that first merge into master and pushed. That may be more
detail than we wanted (and more steps than we anticipated), but describes exactly what
happened:

--A---B---C---D---E----F-----G----H---X---Y--- master
\ \ \ /

11

\ \ I---o
\ \ /
N---O---P---Q---R---S---T---U feature

Using feature branches with appropriate granularity, you tell the story in a kind of novelist
style. Actually, the metaphor falls short in this case, as your audience has the choice to read
just a synopsis (by looking at the main branch only) or go into small details (reading the
commits inside the feature branches).

A Which way to merge

Consider the situation from Sec. 5.1, where you want to join your line of development with
what happened on the server:

--A---B---C---D---E-- origin/master
\
X---Y-------- master

It is tempting to just call

git pull # DON’T DO THIS
or, equivalently ,
git fetch
git merge origin/master # DON’T DO THIS

which would give you the following repository structure

--A---B---C---D---E----- origin/master
\ \
X-----Y-----M--- master

This doesn’t look bad, so you now push master to the server and get

--A---B---C---D---E---M----- origin/master
\ / \
X-----------Y o--- master

Topologically, that is exactly what we want. But there is more to a git repository than pure
topology of the directed acyclic graph: there is an order in parentage. Y is the first parent of
the merge commit M, while E is the second parent:19

2
--A---B---C---D---E---M----- origin/master

\ /1\
X-----------Y o--- master

Straightening out the first-parent connection, this can be rearranged as

1
--A---B---X---Y---M----- origin/master

\ /2 \
C---D---E o--- master

19My notation in the graph is adopted from Junio Hamano’s Blog. Another good discussion on the importance
of first-parent history can be found on the Nestoria Dev Blog.

12

http://git-blame.blogspot.de/2015/03/fun-with-non-fast-forward.html
http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git

and indeed this is what many tools will show you.20

For example, commands like gitk --first-parent (or simply git log --first-parent),
give

--A---B---X---Y---M----- origin/master
\ / \

o--- master

which suggests that the main chain (= first-parent lineage) of commits on the server has
disruptively changed from

--A---B---C---D---E-----

to

--A---B---X---Y---M-----

If the SVN bridge has to rely on first-parent lineage between commits to create its linear
history, such a reinterpretation leads to a new SVN repository structure that is not compatible
with what we had before. Hence, it is not surprising that such merges cause troubles with
the SVN bridge:

$ svn commit <file>
svn: E160024: Transmission failed (Details follow):
svn: E160024: resource out of date; try updating

So is it really wrong to merge? Not if you merge the right way around. You need to create
a merge commit where the latest upstream commit (E in our example) is the first parent, and
the tracking-branch commit (Y) is the second parent.

How to do this is left as an exercise to the reader. It is not very tricky, but for convenience
we have a git-pc command

git pc reverse-pull origin/master # DO THIS INSTEAD
or
git fetch
git pc reverse-merge origin/master # DO THIS INSTEAD

that gives you exactly the desired structure:

1
--A---B---C---D---E---M----- origin/master

\ /2\
X-----------Y o--- master

which you can push without violating our Rule 1.

Apart from avoiding problems with the SVN bridge, merging the right way around will also
lead to a much more meaningful history. Consider the following real-life example:21

20Including the GitHub network graph, gitk (to some extent) and the GitHub SVN bridge.
21The output was obtained using tig on the Pencil Code repository, removing many commits, shortening

and mildly anonymizing the commits.

13

https://github.com/pencil-code/pencil-code/network

� ✁ ✂✄✄ ☎✆✝ ✞✟✠✆ ✡✞✆☛ ☞✂✌☞✍✌✂✞✟✁☎ ✎✁✏ ✡✌✁☛✆ ✌✟✠✟✞✆✄ ✄✟✎✎✍✡✟✁☎

✑ ✁ �✄✄✆✄ ☞✁✠✠✆☎✞✡ ✂✒✁✍✞ ✝✓✟☞✓ ✌✟☎✆ ✝✟✌✌ ☎✁✞ ✝✁✏✔

✕ ✖✗✘ ✖✆✏✙✆ ✒✏✂☎☞✓ ✚✠✂✡✞✆✏✚ ✁✎ ✓✞✞☛✡✛✜✜✙✟✞✓✍✒✢☞✁✠✜☛✆☎☞✟✌✣☞✁✄✆

✤ ✥ ✁ ✦✆✧✟✡✆✄ ✄✂✞✂ ✞✁ ✂☞☞✁✍☎✞ ✎✁✏ ☞✁✏✏✆☞✞✟✁☎ ✞✁ ☞✓✟✣✞✓✆✏✠

✑ ✥ ✁ ★✆✞✡ ✡✆✆ ✟✎ ✞✓✆ ☎✆✝ ✩✪ ✠✁✄✍✌✆✡ ✝✁✏✔ ✆✧✆✏✫✝✓✆✏✆ ✂✡ ✆✬☛✆☞✞✆✄✢✢✢

✤ ✥ ✖✗✘ ✖✆✏✙✆ ✒✏✂☎☞✓ ✚✠✂✡✞✆✏✚ ✁✎ ✓✞✞☛✡✛✜✜✙✟✞✓✍✒✢☞✁✠✜☛✆☎☞✟✌✣☞✁✄✆

✑ ✥ ✥ ✁ ✭✆ ✆✬☛✌✟☞✟✞✌✫ ✝✂☎✞ ✞✁ ✂✌✌✁✝ ✠✟✡✡✟☎✙ ☎✂✠✆✌✟✡✞✡

✤ ✥ ✖✗✥✗✘ ✖✆✏✙✆ ✒✏✂☎☞✓ ✚✠✂✡✞✆✏✚ ✁✎ ✓✞✞☛✡✛✜✜✙✟✞✓✍✒✢☞✁✠✜☛✆☎☞✟✌✣☞✁✄✆

� ✥ ✥ ✁✗✮ ✎✟✬✆✄ ✡✁✠✆ ✆✏✏✁✏✡

✤ ✥ ✖✗✥✗✘ ✖✆✏✙✆ ✒✏✂☎☞✓ ✚✠✂✡✞✆✏✚ ✁✎ ✓✞✞☛✡✛✜✜✙✟✞✓✍✒✢☞✁✠✜☛✆☎☞✟✌✣☞✁✄✆

� ✥ ✥ ✁✗✮ ✏✆✠✁✧✆✄ ✡✁✠✆ ✄✁✍✒✌✟☎✙ ✁✎ ✡✁✠✆ ✡✍✒✏✁✍✞✟☎✆

� ✥ ✥ ✁ ✠✁✏✆ ✁☎ ✡✌✁☛✆ ✌✟✠✟✞✆✄ ✄✟✎✎✍✡✟✁☎

✯ ✥ ✥ ✖✗✘ ✖✆✏✙✆ ✒✏✂☎☞✓ ✚✠✂✡✞✆✏✚ ✁✎ ✓✞✞☛✡✛✜✜✙✟✞✓✍✒✢☞✁✠✜☛✆☎☞✟✌✣☞✁✄✆

✰ ✥ ✥ ✥ ✁ ✂✄✄✆✄ ✱✟✌✌ ✧✁✏✞✆✬ ✏✂✟☎ ✂✡ ✎✁✏☞✟☎✙

✑ ✥ ✥ ✥ ✖✗✘ ✰✟☎✂✌✌✫ ✎✟✬✆✄ ✞✓✆ ✌✂✡✞ ✡✞✟✌✌ ✒✏✁✔✆☎ ✂✍✞✁✞✆✡✞

✑ ✥ ✥ ✥ ✥ ✁ ✰✟☎✂✌✌✫ ✎✟✬✆✄ ✞✓✆ ✌✂✡✞ ✡✞✟✌✌ ✒✏✁✔✆☎ ✂✍✞✁✞✆✡✞

� ✥ ✥ ✥ ✁ ✥ ✖✁✏✆ ☞✁✏✏✆☞✞✟✁☎ ✂☎✄ ✂✄✄✟✞✟✁☎✡ ✎✁✏ ✞✓✆ ✡✌✁☛✆ ✌✟✠✟✞✆✄ ✄✟✎✎✍✡✟✁☎✲

✑ ✥ ✥ ✥ ✁✗✮ ✦✆✠✁✧✆✄ ✳✂✏✏✂✫ ✞✆✠☛✁✏✂✏✟✆✡✳✲ ✡✆✆ ✂✌✡✁ ✴✂✵✶✎✶☞✆✂✶✴✶

✷ ✥ ✥ ✥ ✁ ✂✄✄✆✄ ✂ ☛✓✂✡✆ ✞✁ ✆☎✎✁✏☞✆✄ ✧✆✏✞✟☞✂✌ ✡✓✆✂✏ ☛✏✁✎✟✌✆✸

✯ ✥ ✥ ✁ ✥ �✄✄✟☎✙ ☞✁✠☛✁☎✆☎✞✡ ✁✎ ✞✓✆ ☞✍✏✏✆☎✞ ✓✆✌✟☞✟✞✫ ✞✆☎✡✁✏✢

✤ ✥ ✁ ✥ ✥ ✞✓✆✏✠✁ ✓✫✄✏✁✡✞✂✞✟☞ ✆✹✍✟✌✟✒✏✟✍✠ ✩✺✖ ✡✞✟✌✌ ✍☎✄✆✏ ☞✁☎✡✞✏✍☞✞✟✁☎

✕ ✁ ✥ ✥ ✥ ☛☞✻✠✆✂☎✎✟✆✌✄✻☞✁✌✌✆☞✞✛ ✰✟✬✆✄ ✡✁✠✆ ✒✍✙✡ ✂☎✄ ✏✆✠✁✧✆✄ ✌✟☎✆ ✝✏✟✞✆✡

So, did users A, B and G really work on the same feature branch to add phase to the shear
profile, remove array temporaries and to correct slope limited diffusion? And did those
commits get merged in a commit that claims to have fixed the last broken autotest?

The true story must have been more like this:
� ✁ ✂✄✄ ☎✆✝ ✞✟✠✆ ✡✞✆☛ ☞✂✌☞✍✌✂✞✟✁☎ ✎✁✏ ✡✌✁☛✆ ✌✟✠✟✞✆✄ ✄✟✎✎✍✡✟✁☎

✑ ✁ �✄✄✆✄ ☞✁✠✠✆☎✞✡ ✂✒✁✍✞ ✝✓✟☞✓ ✌✟☎✆ ✝✟✌✌ ☎✁✞ ✝✁✏✔

✕ ✖✗✘ ✖✆✏✙✆ ✁☎✆ ☞✁✠✠✟✞ ✟☎✞✁ ✠✂✡✞✆✏

✚ ✁ ✛ ✜✆✢✟✡✆✄ ✄✂✞✂ ✞✁ ✂☞☞✁✍☎✞ ✎✁✏ ☞✁✏✏✆☞✞✟✁☎ ✞✁ ☞✓✟✣✞✓✆✏✠

✑ ✁ ✛ ✤✆✞✡ ✡✆✆ ✟✎ ✞✓✆ ☎✆✝ ✥✦ ✠✁✄✍✌✆✡ ✝✁✏✔ ✆✢✆✏✧✝✓✆✏✆ ✂✡ ✆★☛✆☞✞✆✄✩✩✩

✚ ✖✗✛✗✘ ✪✓✟✏✄ ✞✏✧ ✂✞ ✠✆✏✙✟☎✙ ✆✫✍✟✌✟✒✏✟✍✠ ✟☎ ✞✁ ✠✂✡✞✆✏

✑ ✁ ✛ ✛ ✬✆ ✆★☛✌✟☞✟✞✌✧ ✝✂☎✞ ✞✁ ✂✌✌✁✝ ✠✟✡✡✟☎✙ ☎✂✠✆✌✟✡✞✡

✚ ✛ ✛ ✖✗✘ ✭✆☞✁☎✄ ✞✏✧ ✂✞ ✠✆✏✙✟☎✙ ✓✧✄✏✁✡✞✂✞✟☞ ✆✫✍✟✌✟✒✏✟✍✠ ✟☎✞✁ ✠✂✡✞✆✏

� ✁✗✛✗✮ ✛ ✎✟★✆✄ ✡✁✠✆ ✆✏✏✁✏✡

✚ ✛ ✛ ✖✗✘ ✯✟✏✡✞ ✞✏✧ ✂✞ ✠✆✏✙✟☎✙ ✓✧✄✏✁✡✞✂✞✟☞ ✆✫✍✟✌✟✒✏✟✍✠ ✟☎✞✁ ✠✂✡✞✆✏

� ✁✗✛✗✗✗✮ ✛ ✏✆✠✁✢✆✄ ✡✁✠✆ ✄✁✍✒✌✟☎✙ ✁✎ ✡✁✠✆ ✡✍✒✏✁✍✞✟☎✆

� ✁ ✛ ✛ ✠✁✏✆ ✁☎ ✡✌✁☛✆ ✌✟✠✟✞✆✄ ✄✟✎✎✍✡✟✁☎

✰ ✖✗✛✗✘ ✛ ✖✆✏✙✆ ☞✍✏✏✆☎✞ ✓✆✌✟☞✟✞✧ ✞✆☎✡✁✏ ✟☎✞✁ ✠✂✡✞✆✏

✯ ✁ ✛ ✛ ✛ ✂✄✄✆✄ ✱✟✌✌ ✢✁✏✞✆★ ✏✂✟☎ ✂✡ ✎✁✏☞✟☎✙

✑ ✖✗✛✗✛✗✘ ✛ ✖✆✏✙✆ ✎✟★ ✎✁✏ ✌✂✡✞ ✒✏✁✔✆☎ ✂✍✞✁✞✆✡✞

✑ ✛ ✛ ✛ ✁ ✛ ✯✟☎✂✌✌✧ ✎✟★✆✄ ✞✓✆ ✌✂✡✞ ✡✞✟✌✌ ✒✏✁✔✆☎ ✂✍✞✁✞✆✡✞

� ✁ ✛ ✛ ✛ ✛ ✖✁✏✆ ☞✁✏✏✆☞✞✟✁☎ ✂☎✄ ✂✄✄✟✞✟✁☎✡ ✎✁✏ ✞✓✆ ✡✌✁☛✆ ✌✟✠✟✞✆✄ ✄✟✎✎✍✡✟✁☎✲

✑ ✁✗✛✗✛✗✮ ✛ ✜✆✠✁✢✆✄ ✳✂✏✏✂✧ ✞✆✠☛✁✏✂✏✟✆✡✳✲ ✡✆✆ ✂✌✡✁ ✴✂✵✶✎✶☞✆✂✶✴✶

✷ ✁ ✛ ✛ ✛ ✂✄✄✆✄ ✂ ☛✓✂✡✆ ✞✁ ✆☎✎✁✏☞✆✄ ✢✆✏✞✟☞✂✌ ✡✓✆✂✏ ☛✏✁✎✟✌✆✸

✰ ✛ ✛ ✁ ✛ �✄✄✟☎✙ ☞✁✠☛✁☎✆☎✞✡ ✁✎ ✞✓✆ ☞✍✏✏✆☎✞ ✓✆✌✟☞✟✞✧ ✞✆☎✡✁✏✩

✚ ✛ ✛ ✛ ✁ ✞✓✆✏✠✁ ✓✧✄✏✁✡✞✂✞✟☞ ✆✫✍✟✌✟✒✏✟✍✠ ✥✭✖ ✡✞✟✌✌ ✍☎✄✆✏ ☞✁☎✡✞✏✍☞✞✟✁☎

✕ ✛ ✁ ✛ ✛ ☛☞✹✠✆✂☎✎✟✆✌✄✹☞✁✌✌✆☞✞✺ ✯✟★✆✄ ✡✁✠✆ ✒✍✙✡ ✂☎✄ ✏✆✠✁✢✆✄ ✌✟☎✆ ✝✏✟✞✆✡

Most of the development happened on the main line, but occasionally somebody had a
change that needed to get merged into that line, because other commits got pushed first.

And indeed something like this is how tig would have drawn the graph, had all of the
merges been from tracking branch into the remote branch and not the other way around.

14

	Operative Summary
	Prerequisites
	What is Git?
	What is a Git repository?
	What is a commit?
	The narrative metaphor
	Atomicity

	Don't panic
	I'm almost panicking …

	Joining different lines of development
	What is merging?
	What is rebasing?
	Pros and cons
	Graph structure
	The worst thing that can happen

	Best practices
	Don't merge upstream into your tracking branch
	Alternative 1: Rebase
	Alternative 2: Merge the other way around

	Feature branches

	Which way to merge

